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Distinguishing different paths for rearrangements on 
surfaces 

L Kjeldgaaxdt and J C Schonf 
Niels Bok lnstimtet, NBUAFG Copenhagen University, Blegdamsvej 17, DK-2100 
KBbenhaM 0, Denmark 

Received 3 May 1994 

Abslraci. There exist a variely of theoretid mcdels that can be employed in the description 
of the rearmngements on surfaces. Prominent examples are the coarsening mcdel of Lifshitz 
and Slyoww and the diffusion aggregation process due U) von Smoluchowski. We @om 
computer simulations on the merging of pores in a two-dimensional king model with the 
goal of defermining the mndifions under which the system follows one of these paths during 
remnshuoion. The parameten that are varied during the investigation are the size of the pores, 
their separation and the temperature of the system. If is found uwf with inneasing temperature 
the Mnsition l i e  moves towards larger distance and radii and broadens for high temperahueS. 

1. Introduction 

Both in two-dimensional and three-dimensional systems a multitude of processes exist that to 
some degree show coarsening behaviour. These range from the movement and accumulation 
of He bubbles in the steel walls of nuclear reactors [ 1-31 and coagulation of, for example, 
protein [4] over the Ostwald ripening during sintering [SI and recrystallization processes 
to the reconstruction of surfaces after, for example, MBE or ion bombardment [6]. The 
common element in all these processes is the formation of larger domains-bubbles or 
pores consisting of atoms or vacancies-that can move, merge, split andor interact via 
emission and reabsorption of carriers @e it atoms or vacancies). The development of 
the size distribution of such domains has been studied both experimentally [7-101 and 
theoretically [ll-14] for a long time. 

The growth of larger domains can occur in two basic ways: through coalescence 
of smaller domains or through the emission and reabsorption of individual carriers as, 
for example, in Ostwald ripening. All other models seem to be based on variations or 
combinations of these two mechanisms. Two models, each of which describes in an idealized 
form one of these. mechanisms, were originally proposed by von Smoluchowski [12] and 
Lifshitz and Slyozow [15], respectively. The former assumes that no carriers are emitted 
once they are part of a larger pore, and that the growth of the pores takes place via the slow 
diffusion of the whole pores and their merger upon encountering one another. In contrast, 
the latter supposes that the distances between the pores are so Iarge that the motion of 
the pores can be ignored, and the only interaction among them is via a 'sea' of carriers 
that permeate the host matrix and which are being emitted and absorbed constantly by the 
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individual pores. Both models have in common that in their purest version, the time scale 
for shape changes of the pores is very short compared to all other processes. 

Clearly, if the pores are so close that they are nearly touching one another, then a 
von Smoluchowski-like process will occur, while for pores that are infinitely far apart no 
direct contact is possible, and the interaction must happen via individual carriers. It appears 
reasonable to suggest that there should be some transitional distance that separates the two 
extremes. Such a critical distance will presumably he a function of the size of the pores and 
the temperature. Whether this transition is sharp or diffuse might he difficult to establish, 
since no system-be it real or simulated by computer-will in a l l  likelihood fulfill all 
the implicit assumptions of the models and also be able to encompass both of them. In 
particular, the shape of the pores and their locomotion typically do not fully obey the simple 
pictures used to describe them. 

Keeping this in mind, we have studied the movement of pores of various sizes and 
their interaction and eventual merger using a two-dimensional Ising model. We find a linear 
transition line in the radius against separation distance phase diagram, with decreasing 
slope for increasing temperature. We also observe a broadening of the transition l ie ,  to a 
transition region in the highest temperature run. 

Furthermore, we have selected initial configurations containing many pores deep withi  
each of the two regimes, and studied the time evolution of these systems. We find that the 
average size of the pores grows as in the case of the ‘Smoluchowski-type’ mechanism, 
while the growth follows a tR33 law for the ‘LifshitzSlyozow-type’ mechanism. We show 
that these results agree with simple models of the time evolution of such systems. 

L Kjeldgaard and J C ScMn 

2. Procedure of the computer simulations 

We have performed constant density simulations of two pores of identical initial size, on a 
square lattice. Its size was varied according to the size of the pores in order to keep the 
vacancy density constant. 

The pore radii, r ,  were increased from one to six (in units of the lattice constant) and 
the lattice from 20 x 20 to 120 x 120. The initial distances, d, between the two pores varied 
from two to nine lattice constants. 

Three different temperature values were chosen, T = 0.25, T = 0.375 and T = 0.5, in 
units of the nearest neighbour interaction, J I  . 

After having determined the regions in (r, d) space, where each of the two different 
regimes apply, i.e. growth through coalescence and single carrier emission+absorption, 
respectively, we performed simulations using many pores. The initial conditions were 
always chosen to ensure that only one of the two mechanisms would apply throughout a 
given run. Up to fifty pores were used in order to get a reasonably smooth time evolution 
of the ensemble of pores. 

In addition, we determined the diffusion constant as a function of the radius of the pores 
within the context of our model system, in order to allow comparison with simple models 
and experimental observations. 

To perform the simulations, we employed the two-dimensional lattice gas king model 
with nearest and next nearest neighbour interactions, 51 and J2, where we set 51 = 1 and 
.Iz = l / f i  for simplicity: 

(1) 

For each run the number of vacancies were kept constant. The diffusional dynamics of 

H = -JI  zui~j - J ~ z u i ~ j .  
tin m 



Rearrangement panems on surfaces 7271 

the atomshacancies were calculated using the random exchange of nearest neighbours 
weighted according to the Metropolis criterion. Periodic or reflecting boundary conditions 
were employed depending on the problem. The main calculations were done on a VMS 
mainframe taking approximately 18 months, and reached up to IO7 timesteps each. 

3. Results of the simulations 

3.1. Dimion of single islands 

In order to determine the diffusion coefficient as a function of its radius within the context of 
our model, we have plotted the mean displacement squared versus the number of timesteps. 
Its slope is proportional to the diffusion coefficient of the pore under consideration. 
Repeating this step at constant temperature for several radii, r ,  we found that 

D(R)  a R-4 (2) 
as shown in figure 1. The statistical error in the values of the diffusion coefficients ranges 
from to and have been indicated by ermr bars in the figure. 

Figure 1. The dihioo  constant as a fundon of Ihe radius of the pore. 

3.2. Transition line between merger and emission+absorption-like behaviour 

Figures 3-5 depict the region in the (r, d )  plane that was covered by the simulations for 
three different temperatures. Each run for a pair of pores of radius r and initial separation 
distance d was carefully monitored and classified according to the coalescence mechanism. 
All instances where a continuous decrease in the size of one pore occurred together with a 
smooth increase in the size of the other, were denoted as a 'Lifshitz-Slyozow-type' process. 
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Figure 2. The tempenwe dependence of the slope of the Vansition line. 

In contrast, when an abrupt merger was seen, usually accompanied by the creation of a highly 
elongated intermediate configuration, the coalescence was classified as a ‘Smoluchowski- 
type’ merger. 

As can be seen in the figures, the section of the transition region accessible to OUT 
simulations can be described by a straight line. Clearly, for the highest temperature. T = 0.5, 
the transition l i e  has broadened into a transition zone. Nevertheless, the centre of this region 
can be described approximately by d’ =a?, where a = 1. 

3.3. Multi-pore simulotions 

Finally, we have set up runs with many (fifty) identical pores, and followed their 
time evolution under conditions that corresponded either to the merger-like or the 
emissiontabsorption-like regimes. Figures 6 and 7 show plots of the average number of 
vacancies in a pore against time steps. Also shown is a power law fit of the mean cluster size. 
In the ‘Smoluchowski’ regime, the exponent equals 0.37, whereas the ‘Lifshitz-Slyozow’ 
regime shows a growth proportional to The standard deviation was found to be 0.11 
for the merger-like and 0.07 for the emissiontabsorption-like process. 

4. Comparison with simple analytical models 

In order to gain further understanding of the simulations, we compare the results with the 
predictions of simple models for the diffusion behaviour, the analytical form of the transition 
line and models for the early time behaviour of merger-like and emission+absorption-like 
processes. 
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4.1. The di@iision coeficient 

In appendix A, we present the adaptation of several standard models for the size dependence 
of the diffusion constant to the two-dimensional case. We can distinguish the following cases 

(a) perimeter transport: Dpme - Di,,dr-) 
(b) area aansport: DF - Didr-' 
(C) vapour tranSpOrt: Dpm - Didr-', Dpon 
(d) local equilibrium transport: DF - Di.dr4(r + b(T)) .  

The size dependence of the diffusion coefficient that was observed during the simulations 
agree only with model (d), for small pores. We would expect that for larger pores a standard 
perimeter transport would be observed. Further studies of larger pores and the temperature 
dependence of the diffusion constant would be necessary in order to decide whether this 
expectation holds true. 

Dhdr-' 
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4.2. The transition line 

A simple derivation of the location of the transition line can be given as follows. For 
two pores of radius r to merge, they have to be within a centreto-centre distance 
dee = 2r + f ( r ,  T ) ,  where f ( r ,  T )  is a measure of the deformation due to the shape 
fluctuations a pore will exhibit at a temperature T. Thus, the pores will have to diffuse 
a distance d - f(r, T), where d is the initial surface to surface separation of the initially 

2 -  

1 

+ + + + + + 
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Figure 4. The transition line for T = 0.375. fitled wilh. (i) d' = d(T)r  + y'(T), d(0.375) = 
0,5675,y'(0.375) = 1.83 (solid line) (ii) d' = a(qr  + 2- + y(T),n(0.375) = 
0.562S,fl(O.375 = 0aOl. ~(0.375) = 1.83 (dashed line). The cmsses indicate the merger- 
like rrgion and the squares ma& what we classilid as Ihe emissiontabsorptian-like &on. 

circular DOE. With a diffusion constant D(r>. the time necessarv for meminp f--- enuals 

Of course, if d < f ( r ,  T), the merger will be instantaneous, i.e. tWqe = 0. 
For the appropriate time scale in the emission+absorption-like process, we may 

concentrate on the survival time of a pore of radius r during a 'Lifshitz4lyozow-type' 
coarsening process. Since the average radius ii(t) is proportional to the critical radius U&) 

to survive up to a time t and ci(t) is proportional to t1 /3,  we can relate'the time for a pore 
to vanish t ~ .  to the radius of the pore [ 141 

Here b(T) is defined in Appendix C, equation (Cl). EQuating tmrrge and tvao, we find the 
equation for the transition line: 

For the example in this study, D(r)  - Dindr". If, in addition, the diffusion proceeds 
according to mechanism (d) of section 4.1, we note that the term under the square root sign 
in equation (5) should be. only weakly dependent on the temperature. 
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Figure 5. lix "ition line for T = 0.5. f i e d  with: (i) = d(nr + y'(T). or'(O.5) = 
1.O,y'(O.5) = 0.0 (solid line) (ii) d' = or(r)r + rJS7i 'Tir i -  y(T).a(0.5) = 1.0, p(O.5 = 
0.001, y(O.5) = 0.0 (dashed line). The CIOSS indicate the wer-like region and the squares 
mark what we classified as the emission+absalption-like region. 

Furthermore observations of the shape fluctuations suggest that f ( r ,  T) = a(T)r+y (T)  
with &/dT =- 0. Thus we expect the transition line to have the functional form 

8 0 )  = a(T)r + 2 p 7 + y(T) (6) 

where p ( T )  should at most be proportional to T. For r -+ 0 or CO, d' -+ oc). There exists 
one minimum which is located at 

This derivation agrees with the results shown in figum 3-5, if one assumes that R,,,in 2, 
such that our simulations are already in the appropriate straight line segment of the transition 
line. 

Fitting the data to this functional form we found for a(T), p ( T )  and y(T) 
a(~) = 4 ~ *  (cf. figure 2) 

1 P m  = - loo0 

The location of the transition line according to equations (6)-(8) has been indicated by the 
dashed lines in figures 3-5. 
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Figure 6. T i  evolution of the mean cluster $zc in the emissiontabsorption-like regime (solid 
line). The dashed l i e  indicates lhe fit 0 a MO) = a(O)(I + ki)'I3 with B(0) = 30.0, and 
k = 0.025. 

4.3. Merger-like growth 

In Appendix B, we derive a differential equation for the number of pores present at time t 
for an ensemble that coalesces via the diffusion and merger of whole pores. The derivation 
is appropriate for early to intermediate times and adapts the original arguments of von 
Smoluchowski to the case under consideration. We find that the average size of the pores 
grows as t1 I3,  which compares reasonably well with the observed growth law of 

4.4. Emission+absorption-like growth 

In Appendix C, we derive again a differential equation for the number of pores present 
at time t for an ensemble that coalesces through emission and absorption of vacancies. 
The derivation is based on a separation of time scales, and the assumption that during the 
early stages of the coarsening process the pores are distributed rather densely resulting in a 
shielding of pores by their immediate neighbours. The resulting growth law for the average 
size of the p o m  is found to be M ( t )  = (kt  + which very closely reproduces the 
functional form of the observed growth. 

5. Discussion and outlook 

It was seen in the preceding section that the results of the simulations agree well with the 
predictions of the simple models. This agreement continues for simulations with different 
overall vacancy densities, but so far no systematic study of the density dependence of the 
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Figure 7. Zme evoludoo of the mean clusler size in the merger-like rcgime (solid line). The 
dashed line indicares the fit 10 a M( I )  = M(O)(l +kr)’f’ with d(0) = 35.0. and k = 2.3. while 
he doned line shows the best 61 w thc MO) a io)’, with  proportlonalir, factor M(0)  = 37.0. 

prefactors in the growth models and the parameters in the formula of the wansition line has 
been performed. 

An interesting observation during the ensemble runs is the fact that since N ( t )  decreases 
with time, and thus the average distance between the pores increases, a wansition from a 
merger-like to an emissiontabsorption-like behaviour occurs at some point in time. It was 
therefore necessary to choose the initial conditions for the ‘Smoluchowski-type’ ensemble 
simulations very carefully in order to be able to study a pure merger-like process. We note 
that this is a consequence of the size dependency of the diffusion coefficient we observed 
during the simulations. 

The question whether the simple models we proposed in section 4 are applicable beyond 
the simulations presented in this paper, depend on two issues 

(i) The degree to which the prefactors and parameters may be connected to other 
numerical and/or experimental quantities 

(U) The degree to which the models can be generalized to different dimensions and/or 
different functional forms of ‘empirical’ laws entering the model (e.g. the size dependence 
of the diffusion coefficient). 

Whether the interpretation that the size dependence of the diffusion coefficient follows 
from e.g. mechanism (d) of section 4.1 is correct, could be determined by studying the 
limiting behaviour of D ( r )  for large r ,  which should be approximately D(r )  - T - ~ .  As 
with other suggestions made below, this issue awaits further investigations. However, 
the observed weak temperature dependence of @(T) in the equation of the transition h e  
(equation (6)) indicates that our model for 00) is at least approximately correct. In this 
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context we note that the data obtained by Poulsen eta1 [IO] show a cross over to D(r )  - rm5, 
in their study of diffusion of sodium inclusions in a three-dimensional platinum matrix. 

Clearly all the pore diffusion mechanisms in Appendix A and the model for the transition 
line can be easily generalized to m dimensions (most of the diffusion mechanisms had been 
derived for the case of three dimensions originally). In order to validate these models, it 
would he desirable to repeat our simulations in e.g. three dimensions and, if possible, for 
larger regions of the (r, d )  space. In addition, we feel that interesting phenomena might 
occur for temperatures and densities near the equilibrium phase transition of the King model. 
Already some indications may be seen in the existence of the transition zone for T = 0.5, 
where y(T) reaches zero in a singular manner. 

In this context it should be mentioned that the shape of the transition l i e  can change as 
the distribution of pores evolves. Equation (6) was derived using equation (4), which strictly 
holds [14]-up to correction terms-only in the LifshitzSlyozow model for isolated pores. 
If one includes the shielding effects during the early stages of the 'LifshitzSlyozow-type' 
process, one iinds, according to Appendix C and our simulations, 

(9) 
instead of equation (6). Thus, as the coarsening proceeds and shielding effects become 
less prominent, the transition line will change from equation (9) to equation (6). Note that 
since f?(T) in equation (8) was found to be very small, the transition l i e  observed in our 
simulations can be fitted both to equation (6) and equation (9), with d(T) FZ: a(T) and 

Concerning the two growth models in Appendices B and C, we note that the 'Lifshitz- 
Slyozow-type' model obviously shows no dependence on the functional form of D(r).  If we 
repeat the calculations in Appendix C with the same degree of approximations for different 
dimensions m we find a growth law of a t'"/(*'"). For the case of two dimensions, we 
also consider the case o f t  + 00, i.e. no shielding is present and all the pores interact equally 
with each other. Note that this would be different from the classical LifshitzSlyozow model, 
where the interaction explicitly occurs through the free vacancies in the matrix. If now the 
same estimates for the behaviour of MO and ?i hold, then # a t1I2. However, for large 
t ,  MO will probably grow more slowly than #. Assuming that MO a 71 a a, we find 
M a The latter result would agree with the result of the standard two-dimensional 
LifshitzSlyozow model, while the former lies halfway between the shielding model and 
the LifshitzSlyozow result. 

The extensions of the 'Smoluchowski-type' model are more involved, since both the 
functional form of D(r)  and the dimension m play an important role in the derivation. 
Assuming again a sharply peaked initial pore size distribution and D ( r )  - P ,  we find for 
intermediate times t that 

L Kjeldgaard and J C Sch& 

d' = a'(T)r + y'(T) 

Y'V) y(T) .  

- dN a -&(-&/m)i(m-z)/m 
mar dt 

and thus # approximately follows the growth law M a t'"/(2ff)). 
We note here that while the calculation in Appendix C is rather straightforward and 

the approximations are well controlled by the separation of time scales argument, the 
approximations involved in Appendix B are more subtle. They involve both the short 
time limit in order to deal with the gradual change of the pore size distribution and also the 
(somewhat) long time limit (used already by von Smoluchowski in his original derivation) 
in order to avoid having to deal with the shielding effects directly. If one were to try and 
take this into account-as in Appendix C-d if one keeps only the first term in the short 
time expansion in the diffusional flow (equations @6), (BIO)), one finds M a tm/@+2). We 
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observe that for the case investigated in the simulations. E = 4, the behaviour of M in the 
two models is identical. Furthermore, let us assume that mechanism (d) (cf. section 4.1) for 
the size dependence of D(r )  holds, and thus for intermdiate radii of the pores, 3 e E -= 4. 
Then we would expect that the growth exponent of M should be slightly larger than 1/3 
and slowly increase with time as the surviving pores grow. The exponent observed during 
the simulations would be consistent with this interpretation. 

The original motivation of this work has been the attempt to understand which paths a 
physical system would follow during surface and grain boundary evolution, and thus which 
model for the p w t h  kinetics of the pores and/or grains would be most appropriate. Once 
this is known, one might be. able to estimate the effects due to changes in the controlling 
parameters such as the temperature. This should allow more control in, for example, the 
rearrangements on surfaces after the deposition of atomic layers from the gas phase or the 
bombardment with ions. 

Beyond these relatively applied issues, we feel that the models we present could be 
used to address more mathematical questions, like the solution of the von Smoluchowski 
equations in three dimensions for kernels (i.e. diffusion coefficients D i j )  that depend on the 
radius by some inverse power, E, r f .  This might complement work by Hendriks et al[16], 
which appears to apply only to the case D(r)  - r x .  Finally, the methods we present 
to deal in a local average fashion with shielding effects should also be useful in standard 
diffusion-reaction and ensemble growth models. 
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Appendix A. Movement of the pores 

In the literahue [ll] a number of transport mechanisms for the movement of bubbles of e.g. 
He in steel have been suggested: surface hansport, volume transport and vapour transport 
eo th  at constant pressure and constant surface tension). All these mechanisms are based 
on the assumption that the diffusion of a large pore occurs via the collective effect of the 
diffusion of single atoms belonging to the matrix or the bubble. Their derivation can be 
adapted to the two-dimensional case. We note that the displacement of one atom or vacancy 
by a distance h corresponds to the movement of the whole pore by a distance A, = h / N ,  
where N equals the number of vacancies in the pore. On the other hand, since there are 
M atoms 'available' to attempt a move within a time step, where M is a function of the 
transport mechanism, the jump frequency of the pore r, is given by 

r, = mina. (-41) 

Finally one knows the diffusion coefficient of the diffusing species for each of these 
mechanisms, i.e. we know the relation connecting the jump frequency of an individual 
carrier rind, the stepsize h during the diffusion process and the single carrier diffusion 
coefficient D a ,  



7280 

Together with the delinition of the (two-dimensional) pore diffusion coefficient as 
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Dp = $rpA: 
we can derive an expression for Dp for the various transport mechanisms. We note that for 
simplicity it is typically assumed that A corresponds approximately to the mean diameter 
of a single representative of the diffusing species, and that the pore is approximately disk 
shaped with radius r .  It follows that 

zr2 
N = z .  

A.l .  Perimeter transpori 

Here, it is assumed that the transport occurs via the movement of atoms of the host matrix 
belonging to a thin zone of thickness A along the perimeter of the pore. Thus 

and it follows from equations (AlHA3) that 

2 ~ ~ 1 3  Dp  = - 
nr3 . 

A.2. Area transport 

We assume that the vacancies are diffusing through the whole area of the host matrix. 
Typically it is assumed that all the vacancies can participate; so we have 

M = N  647) 
and thus 

D&= 
Dp = - 

nr2 ' 

A.3. Vapour transport 

It is assumed that atoms of the host mahix evaporate from the perimeter of the pore and 
diffuse through the (vapour filled) pore to the other side. Thus 

A = A  8 649) 

In order to determine M, we note that the evaporated host atoms can be treated as an ideal 
gas and that their number is determined by their vapour pressure, Pv: 

Then, we find that 
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where an explicit temperature dependence has entered. In this situation it was implicitly 
assumed that the gas pressure, Pe. within the pore is independent of the size of the pore. 
Alternatively, the gas pressure may balance the surface tension U of the pore, resulting in 

o 
P 

g -  r 
It follows that 

NrP, M=- 
o 

A.4. Local equilibrium transport 

The last transport mechanism is based on the assumption that local equilibrium exist between 
the pore of radius r and the cloud of vacancies surrounding it. If these vacancies dominate 
the pore diffusion, the number of participating vacancies is approximately given by 

(A 16) 
The second equality follows from equation (Cl). It follows that the pore diffusion coefficient 
equals: 

M = co,ZnAr = comZnA(b(T) + r ) .  

We note that for large radu this mechanism becomes essentially indistinguishable from the 
perimeter transport. 

Appendix B. Early time growth law for merger-like processes 

We derive an approximate formula for the number of pores at time t, N(t),  which is valid 
for small to intermediate times in the von Smoluchowski picture. 

We begin by considering the flow across the perimeter of a disk with radius R. The 
two-dimensional diffusion equation for the pore density U with the bounday conditions: 

u = c  for t = 0 ,  r z R  
u = O  for t > O ,  r = R  

can be solved by separation of variables via the ansatz 

u = Lmh(cx; r, t)du, h(a; r ,  t )  = ew'g(a,  r )  (B2) 

where g ( a ,  r )  is the solution to the differential equation 

D -+-- =-ag .  (2 ;:) 
The result is [17]: 

where (Y = kZ.  
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The amount of diffusional substance F crossing the perimeter at r = R in unit time is 
given by 

dk. (B5) 
1 F(t) = 2TRD- = - 

ar s:D dmexp(-Dk2t) k(Yt(kR) + JO(kR)) 
Since we are interested in relatively short times, we expand F(t) for small t :  

F(t) = 2ncD (7. R a + O ( 4 ) ) .  
n D t  

The total amount of material M(At) added in the time At then equals 

Following the arguments of von Smoluchowski 1121, the probability P ( t )  that for a given 
particle no merger has occurred within a time t ,  is given by 

Assuming that the particles (i.e. the pores) can be treated as independent, the number density 
v ( t )  of those which have not merged equals 

Their decrease is given by 

_ = _  dv vncD (- 2R + 1) 
dt m 

For the intermediate time scale that we are interested in we make the assumptions that we 
can take the slow decrease in the number of available particles into account by replacing c 
by v,  and that we should be able to drop the 2 R / m  term: 

Since both merging particles, i and j, are in motion, the diffusion constant in the preceding 
equation should be replaced by the s u m  of the individual diffusion constants, Dtj = Dj + Dj. 
Finally we take into account that all pores can move and merge, i.e. the primary pores can 
merge not only with themselves, but with pores of all sizes. This can be described by a set 
of chemical reaction equations 

also known as the von Smoluchowski equation for a finite system. 
Nrot is the size of the largest pore possible containing all the vacancies present in the 

system. As long as Nln + CO. or at least the times considered are short enough such that 
vi(?) = 0 for i > L with L << NtM, equation (B12) is approximately correct 

The total number of pores per unit volume at time t is given by 
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This leads to a differential equation for Mo(t) 

which can be rewritten as 

(€314) 

An exact solution of this equation does not appear to be feasible. However, we may make 
some reasonable assumptions based on the qualitative picture that; (a) U&) = 0 for i z L 
with 2L < Nmt; (h) w j ( t )  as a function of i is rather strongly peaked in the neighbourhood 
of a vahe im(t); (c) for our simulations, D(r)  o( r 4  o( i-*. 

From @) we can conclude that Mo(t) FJ vi,@) and i-(t) FJ N,,/Mo(t). From (a) 
and (c) it follows that by expanding and rearranging the double sum in equation (€314) we 
can approximate the first sum in equation (B15) as: 

Next we find 

Collecting all the proportionality factors into one constant, A, we then get the following 
differential equation for Mo(t) for early times: 

Solving this equation, we find 

Since mass conservation holds, the first moment, Nmt, is constant, and we have that the 
mean cluster size, h(t)-which is the fraction of the zeroth and the first moment, grows 
inversely proportional to Mo(t): 

Appendix C. Early time growth in emission+absorption-Like procwes 

During the early time development of a system of pores that interact via the emission and 
absorption of individual vacancies, several effects occur that are not present in the standard 
Liihitz-Slyozow model: there is no steady state equilibrium between the vacancy density 
close to the pores and the vacancy density in the regions between the pores, i.e. the pores 
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interact on an individual basis and not via a sea of ‘free’ vacancies. Furthermore, the 
density of pores is so high that a given pore is essentially shielded by its neighbours within 
a distance d ( t )  from the rest of the system. 

In order to model the development of the size distribution, and especially MO@), the 
number of pores per volume, we will employ some separation of time scale arguments: 

L Kjeldgaard and J C SchLin 

C.1. Small time scale 

The fastest time scale should be the local equilibration of a pore of size M, i.e. with radius 
a - Jji?, with its surrounding cloud of vacancies. Thus the pore should be approximately 
disc shaped, and the density of vacancies may be given by the standard formula [E] 

2au’ 
b(T)  = - T .  c& = c k  (1 + F) 

Here, U is the surface tension coefficient and U’ the m a  of a single vacancy. We 
recall that the overall density of vacancies is chosen such that the weak oversaturation limit 
applies. 

C.2. Intermediate time scale 

The next time scale applies to the average pairwise interaction among the pores within an 
effective distance d(t). From the CalcuIations in Appendix B. we know that for very short 
times the total flow of vacancies outward from a pore of radius a equals 

A pore of radius aj at distance dij from a given pore of radius ai will be able to intercept a 
fraction a(T)aj/djj of the flow from the emitting pore, where a(T)aj is the effective cross 
section (it should be related to a(T) in section 4.2). Thus, the net flow of material from a 
pore i to a pore j is given by: 

(U) + 
Assuming for simplicity that all pores j that interact with a given pore i may be placed at 
an average distance d(c), we find that the change of the size Mi of pore i is described as: 

dMi,j C~JZ, D,.d2naiaaj c r ~ ,  Di&raiaaj  -=- 
d i j h F t  ’ dt  d i j m  

-=E>= dMi dM. 
dt j=1  dt 

Here 

We note that since the total number of vacancies per volume, N I ,  is constant, the number 
of pores N(t) and their average sue A?@) are connected via 

N, = N(t)A?(t). (CW 
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Furthermore, a change in these quantities will only occur, if a whole pore has evaporated 
and its vacancies have been absorbed by the rest of the system. Thus, we can assume that 
N(t ) ,  Z ( t )  and d(t)  will change only slowly on the time scale r(Mo(t))  necessary for the 
smallest pores, of size MO@), to vanish. 

We determine r(Mo(t))  by integrating (C4) 

since ci > a. This inequality holds, because MO is supposed to be the size of the smallest 
pores. Therefore, we find 

C.3. Large time scale 

On the largest time scale, we can model the change of A?, or N ,  respectively. The time 
dependence of d( t )  may be estimated by defining the effective shielding distance d(t)  as 
the radius of an area that contains enough pores, nd2N,  with average radius ci such that 
their total cross section, nd2Nol(T)cii, equals the circumference of this area, 2nd.  All pores 
outside this area are effectively shielded from the pore in the centre. 

Therefore, d(t)  is related to N ( t )  and Z ( t )  by 

It is more difficult to establish the behaviour of Z ( t )  and Mo(r). It can be estimated that 
Z ( t )  will on the average grow as a., where l / 2  < E < 1, since f i  > ci > &?/a. 
Since we begin our simulations with an equal size distribution, we may assume that this 
will remain rather strongly peaked around M, at least for the early time behaviour we are 
modeling. This suggests that 6 may be taken to be 1/2. Similarly, we can assume that 
MO@) will be proportional to a@), i.e. MO@) =8&?(t). 

Based on these considerations, we can derive a differential equation for N(t ) :  

Solving this equation yields: 

From this follows, using equation (CS), that the average size of the pores grows as 
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